This article was downloaded by:

On: 14 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Molecular Simulation

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713644482

Oxygen Interstitial Defects in High-*T*<*sub*>*c*</*sub*> Oxides

N. L. Allana; W. C. Mackrodtb

^a School of Chemistry, University of Bristol, Cantocks Close, Bristol, UK ^b ICI Chemicals and Polymers Ltd., Runcorn, Cheshire, UK

To cite this Article Allan, N. L. and Mackrodt, W. C.(1994) 'Oxygen Interstitial Defects in High-T < sub > c < /sub > Oxides', Molecular Simulation, 12: 2, 89 - 100

To link to this Article: DOI: 10.1080/08927029408022526 URL: http://dx.doi.org/10.1080/08927029408022526

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

OXYGEN INTERSTITIAL DEFECTS IN HIGH-T_c OXIDES

N.L. ALLAN

School of Chemistry, University of Bristol, Cantocks Close, Bristol, BS8 1TS, UK

W.C. MACKRODT

ICI Chemicals and Polymers Ltd., P.O. Box 8, The Heath, Runcorn, Cheshire, WA7 4QD, UK

(Received January 1993, accepted January 1993)

Atomistic lattice calculations are reported of the energetics associated with the formation of oxygen interstitial defects in La_2CuO_4 , Nd_2CuO_4 , $LaNdCuO_4$, and $YBa_2Cu_3O_6$. The location and charge state of the additional oxygen are considered and hole-interstitial association energies estimated. The last of these varies considerably from system to system. The implications for the high- T_c behaviour of these materials, including the effects of fluorination on La_2CuO_4 and Nd_2CuO_4 , are discussed in detail.

KEY WORDS: High- T_c oxides, oxygen interstitial defects

INTRODUCTION

In all the known high temperature superconductors the charge carriers are extrinsically controlled. These can be produced either by doping with aliovalent impurities (as with La_{1.85}Sr_{0.15}CuO₄ [1] and Nd_{1.85}Ce_{0.15}CuO₄ [2]) or by oxidation (as in La₂CuO_{4.13} [3-5] and YBa₂Cu₃O_{6+X} [6]). In previous work [7] the first of these modes was examined in detail together with the defect chemistry of the ternary cuprates M_2 CuO₄ (M = La,Nd) using well-established computational methods. Oxidation and, in particular, the possible role of oxygen interstitial defects in these systems, was not considered.

Subsequent to our initial studies [7] it has been established [3-5] that the *Fmmm* oxygen-rich phase of lanthanum cuprate, La_2CuO_{4+Y} , prepared by high pressure/high temperature treatment of La_2CuO_4 , has a T_c (\approx 38 K) comparable to that of $La_{2-X}Sr_XCuO_4$. However, there has been some controversy concerning the nature of the excess oxygen into the lattice. Early reports of bulk superoxide (O_2^-) [8] have been disputed [9] on the grounds that much of the excess oxygen is superficial, for homogeneous samples with high oxygen content appear to be virtually impossible to achieve due to spontaneous phase separation below 320 K [3]. The high temperature electrical conductivity and Seebeck coefficient measurements of Su et al. [10] support the presence of doubly charged oxygen interstitials, while Jorgensen et al. [11] have reported neutron diffraction data for the isomorphous

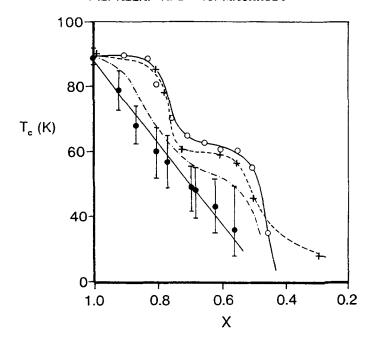


Figure 1 Variation of T_c with oxygen content X for differently prepared samples of YBa₂Cu₃O_{6+X} samples (after reference 12). Closed circles - reference 12; open circles - reference 13; + - - + - reference 14; - · - · - · - reference 15.

compound La_2NiO_{4+X} that, for the *Fmmm* phase at least, are consistent with interstitials of this type but preclude the larger peroxide or superoxide ions.

In view of these diverse interpretations of oxygen excess in La_2CuO_4 , a further examination based on atomistic lattice calculations might be of value. Accordingly, in the present paper we report calculated energies of oxygen interstitial defects in La_2CuO_4 and, for completeness, in Nd_2CuO_4 and $LaNdCuO_4$, which are representative of ternary cuprates with the so-called T' and T^* structures respectively.

In the presence of even a small amount of excess oxygen La_2CuO_{4+X} is superconducting [4]; for example, T_c for $La_2CuO_{4,13}$ is 34 K [4]. In contrast, it is clear from Figure 1, which shows the variation of T_c with oxygen content for $YBa_2Cu_3O_{6+X}$ reported by several groups [12-15], that this system is not superconducting for $X < \approx 0.3$, irrespective of the means of sample preparation. On the other hand, $Y_{1-Z}Ca_ZBa_2Cu_3O_6$ has a reported $T_c \approx 50$ K [16, 17]. In this work, therefore, we also compare oxygen incorporation in La_2CuO_4 and $YBa_2Cu_3O_6$ in an attempt to rationalise this intriguing behaviour.

The crystal structures of all the systems for which calculations are reported here are shown in Figure 2. La₂CuO₄, Nd₂CuO₄ and LaNdCuO₄ contain CuO₂ planes in which the Cu is six-, four- and five-fold coordinated to oxygen respectively. YBa₂Cu₃O₆ possesses a double layer of CuO₅ pyramids and also two-fold coordinated Cu.

Table 1 Calculated defect and	redox energies (eV) involving	doubly and singly charged oxygen inter-
stitials in tetragonal La2 CuO4,	orthorhombic La2 CuO4 and	Nd ₂ CuO ₄ .

	Tetragonal La₂CuO₄	Orthorhombic La₂CuO₄	Nd ₂ CuO ₄
Defect energies:			
O_i''	-13.89	-13.40	-14.66
O_i'	-1.60	-0.89	-3.22
Schottky energy (per defect)	1.5	1.9	2.6
Frenkel energy (per defect)	1.1	1.6	1.5
Redox energies:			
$E_1 \frac{1}{2} O_2(g) = O_i'' + 2h$	0.7	1.7	3.1
$E_2 O_i'' = O_i' + e'$	5.8	5.7	1.4

THEORETICAL METHODS

The atomistic simulations reported here use the same ionic model and the identical methodology for the treatment of perfect and defective lattices as employed previously [6]. Charges are assigned to ions according to usual chemical valence rules, e.g 2+ for copper, calcium and strontium, 2- for lattice oxygen, 3+ for lanthanum and neodymium. Two-body, electron-gas potentials [18] are used to specify non-Coulombic interactions and the Dick-Overhauser shell model [19] included to allow for the effects of electronic polarization.

An advantage of the ionic model is the straightforward identification of valence band holes as Cu⁺ or O⁻ and defect electrons as Cu⁺, while the terms which contribute to the formation energies of these species have been discussed previously [6]. In the present context they are required to estimate the energetics of the redox processes involving the gain or loss of O₂(g). One advantage of the use of non-empirical potentials potentials is that it is straightforward to obtain a Hartree-Fock electron density for O⁻ and hence derive a set of interatomic potentials for this species. Cation potentials are assumed to be independent of charge state.

The treatment of the defective lattice follows the customary two-region approach [20]. The total energy of the defective system is minimised by means of a relaxation of the nuclear positions (and shell displacements) around the defect. The relaxation is assumed to be greatest close to the defect. The crystal is partitioned into an inner region, which immediately surrounds the defect, and an outer region. In the former the elastic equations for the force are solved explicitly in order to determine the relaxations. In the outer region these are estimated using the Mott-Littleton approximation [21]. In the present work it has been possible to consider inner region radii over 50% ($\approx 3a_0$) larger than those used in our previous studies [6] and consequently, some of the values reported here differ slightly from those presented earlier. As before [6], the Kroger-Vink notation is used throughout to describe lattice and electronic defects.

La₂CuO₄, Nd₂CuO₄ and LaNdCuO₄

Table 1 lists calculated defect energies for singly charged and doubly charged oxygen interstitials in the tetragonal and orthorhombic phases of La₂CuO₄ and

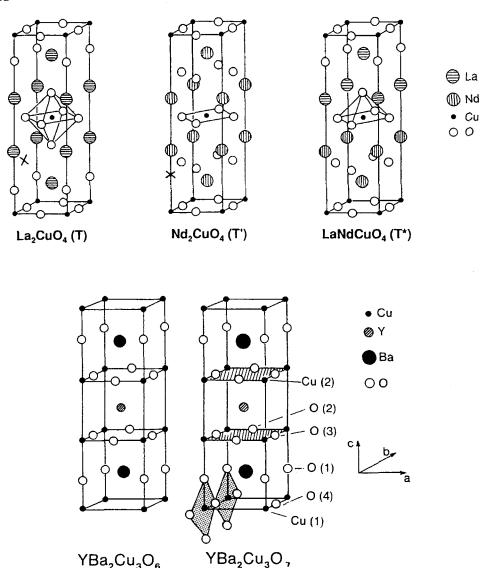


Figure 2 The crystal structures of tetragonal La₂CuO₄, Nd₂CuO₄, LaNdCuO₄, YBa₂Cu₃O₆, and YBa₂Cu₃O₇. In La₂CuO₄ and Nd₂CuO₄ the lowest energy interstitial position is marked with crosses.

also in Nd_2CuO_4 . In each case the lowest energy interstitial position is marked with a cross in Figure 2. This position is favoured over all others we have examined by at least 1 eV. In La_2CuO_4 , the postulated positions, $((0,1/2,\approx1/4))$ in the tetragonal phase and $(1/4,1/4,\approx1/4)$ in the orthorhombic, both with four nearest La neighbours, agree with that suggested by the neutron diffraction studies of Chaillout et al. [22], and that occupied by the excess oxygen in La_2NiO_{4+Y} [11].

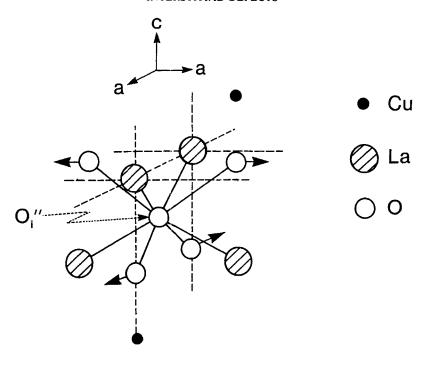


Figure 3 The calculated local environment surrounding a doubly charged oxygen interstitial in $La_2 CuO_4$. The calculated interionic separations are $La - O \approx 2.3 \text{ Å}$, $O - O \approx 2.7 \text{ Å}$.

It is also in agreement with the simulations of Zhang et al. [23] who employed three-body empirical potentials rather than the non-empirical two-body potentials used here. In La₂CuO₄ the four nearest oxygens are displaced about 0.5 Å from their normal lattice sites away from the doubly charged interstitial; the calculated distance between these and the interstitial is 2.7 Å (see Figure 3). This local relaxation is close to that reported for La₂NiO_{4+Y} [11]. However, the neutron diffraction studies of La₂CuO_{4+Y} [22] indicate one short (interstitial O)-(lattice O) distance of < 1.8 Å for which we are unable to account; it could possibly indicate a complex involving an oxygen interstitial and a hole on one of the nearest-neighbour oxygens.

In the case of Nd_2CuO_4 the lowest energy interstitial position is $(0,0,\approx 1/4)$. In the La_2CuO_4 and Nd_2CuO_4 structures the favoured position is a site occupied by an oxide ion in the other.

The calculated Frenkel energies per defect for tetragonal La₂CuO₄, orthorhombic La₂CuO₄ and Nd₂CuO₄ are 1.09 eV, 1.56 eV and 1.46 eV respectively. Whilst these are lower than the corresponding values for Schottky defects (Table 1), the magnitudes suggest only a small degree of intrinsic disorder in the absence of oxygen. This contrasts with results obtained previously for Sr_2CuO_3 and Ca_2CuO_3 [24]. In the latter systems, which contain one-dimensional CuO_2 chains rather than two-dimensional CuO_2 planes, calculated anion Frenkel defects are lower in energy than in La₂CuO₄ and Nd₂CuO₄ with values of -0.1 eV and 0.4 eV per defect for Sr_2CuO_3 and Ca_2CuO_3 respectively.

Also listed in table 1 are the calculated energies, E_1 and E_2 respectively, for the important redox reactions:

$$\frac{1}{2}O_2(g) = O_i'' + 2h^{\cdot} \tag{1}$$

and

$$O_i'' = O_i' + e' \tag{2}$$

We have assumed that the first and second ionisation energies for interstitial oxygen are the same as those for lattice oxygen and have used previously reported values [6]. Likewise, the formation energies of electronic defects were those estimated in earlier work [6, 25-27].

From the values of E_1 and E_2 doubly charged interstitials are predicted in both materials and a $p(O_2)$ dependence of 1/6 for [h], as suggested by the high-temperature conductivity measurements of Su $et\,al$. [10]. In addition E_1 for Nd₂CuO₄ is considerably larger than that for La₂CuO₄. This implies that Nd₂CuO₄ will exhibit a substantially smaller range of oxygen excess than La₂CuO₄, which also appears to be the case. An analysis of the component energies shows that even though the calculated oxygen interstitial energy in Nd₂CuO₄ is lower than that in La₂CuO₄, E_1 is larger as a result of a considerably larger hole formation energy, 3.1 eV as against 1.5 eV in La₂CuO₄ [6, 25-27].

The formation of doubly charged oxygen interstitials compensated by holes is consistent with the occurrence of superconductivity in $La_2CuO_{4+\gamma}$ since holes are thought to be a necessary prerequisite for high temperature superconductivity in the La-Cu-O system. Furthermore, the maximum value of T_c occurs for $X \approx 0.15$ -0.2 in $La_{2-\chi}Sr_{\chi}CuO_4$, and for $Y \approx 0.08$ -0.1 in $La_2CuO_{4+\gamma}$, which is entirely consistent with the proposed mode of oxygen incorporation since oxygen excess leads to twice the hole concentration of an equivalent excess (doping) of Sr.

 Nd_2CuO_4 exhibits superconductivity apparently only via defect electrons. Consequently, oxygen-rich material would not be expected to be superconducting, and indeed our results suggest that excess oxygen will inhibit superconductivity. This is consistent with the finding that superconductivity in $Nd_{2-x}Ce_xCuO_4$ appears only after a very small amount of oxygen is lost after heat treatment in a reducing atmosphere (e.g., reference 28) which might reasonably be interpreted as the loss of residual oxygen excess.

In the course of this work we also investigated the possible incorporation of peroxide (O_2^{2-}) and superoxide (O_2^{-}) into La_2CuO_4 , but were unable to find any minima in the relevant potential-energy surfaces consistent with the formation of these species. Zhang et al. [23] have also estimated formation energies of O_2^{2-} and O_2^{-} in La_2CuO_4 and found them to be considerably greater than that for the incorporation of oxygen as O_i^{-} . The present and previous [23] studies, therefore, concur with the conductivity measurements of Su et al. [10] which preclude the formation of superoxide and peroxide at elevated temperatures. However, we note that confirmation of one mode of incorporation at high temperature does not rule out an alternative or competing mechanism at low temperatures.

In the case of hole superconductors such as La₂CuO₄, it is important to consider the possibility of hole trapping by the negatively charged oxygen interstitials. We have evaluated the association energies for a number of defect complexes in tetragonal La₂CuO₄ consisting of a single oxygen interstitial and one or two copper and oxygen holes in a variety of configurations. These association energies, which are relative to the energy of an "isolated" oxygen interstitial and that of the corresponding free carriers, are all small (typically a few tenths of an eV) and positive for holes in the CuO₂-planes, indicating a net repulsion between the holes and the interstitials (due to relaxation effects). The association energy between the interstitial and two nearest neighbour oxygen holes is calculated to be negative ($\approx -0.35 \, \text{eV}$ per hole). However, this value is much less than the energy difference between such oxygen holes and copper holes in the superconducting planes. It is suggested, therefore, that holes will not be trapped by interstitials in La₂CuO₄. These results are similar to those found in previous work [6] where it was established that holes are not trapped by divalent or monovalent impurities.

Several groups (e.g., references 29, 30) have reported the preparation of a super-conducting compound ($T_c \approx 40 \text{ K}$) by the direct fluorination of La₂CuO₄. Super-conductivity has also been observed in Nd₂CuO_{4-X}F_X (e.g., references 31, 32), prepared by the action of heat on a mixture of Nd₂O₃, NdF₃ and CuO. Two important reactions involving fluorine are:

$$\frac{1}{2}F_2(g) = F_i' + h' ag{3}$$

and

$$\frac{1}{2}F_2(g) + O_0^x = F_0^{\cdot} + \frac{1}{2}O_2(g) + e^{\prime}$$
 (4)

The first would lead to p-type (super)conductivity, the latter to n-type behaviour. First estimates of the energies of these two reactions can be obtained by equating the lattice energy contributions to the formation of interstitial and lattice fluoride are those for O^- , i. e. $E(F_i') \approx E(O_i')$ and $E(F_0) \approx E(O_0)$. With these and the further assumption that the ionization potential of lattice F^- is that of the free gaseous ion, energies, E_3 and E_4 , for reactions 3 and 4 can be estimated. At 1000 K, which is roughly the synthesis temperature of these systems, there is also a significant contribution to the total free energy from the entropy of gaseous fluorine. Assuming the defect energies are essentially independent of temperature, we estimate E_3 and E_4 to be -1.5 eV and 1.4 eV respectively for tetragonal La_2CuO_4 at 1000 K. The corresponding values for Nd_2CuO_4 are -1.5 eV and -2.0 eV respectively.

Despite the numerous assumptions made in arriving at estimates of E_3 and E_4 , the implications of these values are clear. Fluorination of La₂CuO₄ is expected to lead to the incorporation of interstitial fluoride ions and holes leading to p-type (super)conductivity. In this context it is also worth noting that superconductivity has been observed in chlorine-treated La₂CuO₄ [33], presumably due to a similar mechanism. In contrast, the fluoridation of Nd₂CuO₄ is expected to lead to fluoride ion substitution and the formation of defect electrons, leading to n-type conductivity (cf., the Ce⁴⁺ doping of Nd₂CuO₄ to give Nd_{2-x}Ce_xCuO₄). Previous calculations on Nd₂CuO₄ [7] have found the energy of $E(O_0)$ defects to be only 0.1 eV lower in the Nd-O planes than in the CuO₂ planes, so that it is tentatively suggested that substitution by F^- will take place at both sites. The location of the fluoride ions has, of course, important implications for any theory of

high-temperature superconductivity. The experimental evidence is ambiguous (see the discussion in reference 34). As emphasised elsewhere [26, 27], the differing behaviour of La₂CuO₄ and Nd₂CuO₄ is due largely to the difference in the relative formation energies of defect electrons and holes, which in turn have been linked to the different copper coordinations in the two systems.

Finally in this section we consider briefly the location of oxygen interstitials in the T^* structure, as illustrated by LaNdCuO₄. Figure 2 shows that the T^* structure is a hybrid of the La₂CuO₄ (T) and Nd₂CuO₄ (T') structures in that the unit cell is half T-type and half T'-type. Cu is solely fivefold coordinate while there are two inequivalent lanthanide sites – 9-coordinate (RE) in the T-like half of the unit cell and 8-coordinate (RE') sites in the T' half. Calculations reported elsewhere [27], on LaNdCuO₄ indicate a preferential occupation of the RE and RE' sites by La³⁺ and Nd³⁺ respectively. With reference to Figure 2, the calculated defect energies of double charged oxygen interstitials in this structure at (0, 0, \approx 0.25) and (0, 0.5, \approx 0.75) are -13.6 and -14.6 eV respectively. This suggests, somewhat surprisingly in view of the relative interstitial energies in La₂CuO₄ and Nd₂CuO₄ themselves, that the energy of the interstitial in the T half of the structure is lower in energy than that in the T' section. This is in agreement with the neutron diffraction experiments of Lightfoot et al. [35] which indicated that interstitial oxygen in the T^* structure adopted by La_{1.25}Dy_{0.75}CuO_{3.75}F_{0.5} was located in the T unit.

INCORPORATION OF OXYGEN IN YBa₂Cu₃O₆

We now turn to the incorporation of oxygen in YBa₂Cu₃O₆, the "parent" oxide of YBa₂Cu₃O_{7-X} which was the first system found to possess a T_c (\approx 90 K) at liquid nitrogen temperatures [36]. With reference to Figure 2, YBa₂Cu₃O₇ can be considered formally as derived from semiconducting YBa₂Cu₃O₆ by the introduction of oxygen into the vacant O(4) site. YBa₂Cu₃O₆ possesses Cu atoms in two different environments – 5-coordinate Cu in the CuO₂ planes and 2-coordinate Cu. Electronic structure [37] and previous atomistic simulation studies [27, 38] indicate that these are in different oxidation states – the former Cu(II), the latter Cu(I).

As is the case with La_2CuO_{4+X} , the charge carriers in $YBa_2Cu_3O_{6+X}$ are formed not by aliovalent substitution of the trivalent cation but by oxygen incorporation. We have already alluded to the fact that the variation of T_c with oxygen content X in $YBa_2Cu_3O_{6+X}$ [12-15], shown in Figure 1, is of particular theoretical interest. There appear to be considerable differences between samples prepared by different techniques, and, in particular, between those prepared by quenching from high temperature and those formed by the low temperature reduction of $YBa_2Cu_3O_7$. Nevertheless it is generally accepted that high T_c behaviour does not occur for $X < \approx 0.3$. In contrast, superconductivity has been observed at $\approx 50 \, \text{K}$ in $Y_{1-2}Ca_2Ba_2Cu_3O_6$ [16, 17], in which the charge carriers are introduced by the substitution of Y^{3+} by Ca^{2+} , as in $La_{2-X}Ca_XCuO_4$. Furthermore, the superconducting properties of $Yb_{1-2}Ca_2(Ba_{0.8}Sr_{0.2})_2Cu_3O_{6+X}$, reported recently by Wada et al. [39], are very similar to those of $Y_{1-2}Ca_2Ba_2Cu_3O_{6+X}$, in that these systems are superconducting even for very small values of X.

Calculated hole formation energies in YBa₂Cu₃O₆ [27, 38] suggest the lowest energy *free carrier* to be a Cu hole in the (super)conducting CuO₂ planes (Cu(2)), with a formation energy of $\approx 2.6 \,\text{eV}$. Oxygen holes in the CuO₂ planes are pre-

dicted to be broadly similar in energy ($\approx 3.3 \text{ eV}$) as are holes at the O(1) apical position ($\approx 2.8 \text{ eV}$), allowing for the uncertainties associated with the terms contributing to the total formation energy. Holes at the Cu(1) position, on the other hand, are calculated to have considerably higher energies.

The lowest energy oxygen interstitial site is found to be that at O(4) in the basal plane, in agreement with experiment. In this position the interstitial is *strongly* bound to two neighbouring Cu(1) holes (i.e two Cu²⁺ ions). All other configurations of the oxygen interstitial and the two holes are found to be *much* greater in energy.

The calculated energy, E_1 of $\approx -0.5 \,\text{eV}$, for the incorporation of oxygen at the O(4) site,

$$\frac{1}{2} O_2(g) = O_i'' + 2h' \qquad O_i'' \equiv O_{0(4)}^{\cdot}$$

is lower than that in La_2CuO_4 and compares with the experimental value of $\approx -1.0 \,\text{eV}$ [40, 41]. The strong interstitial-hole association in $YBa_2Cu_3O_6$ contrasts with that in La_2CuO_4 , in which interstitial oxygen is stabilised by four nearest-neighbour La^{3+} ions, and, as a result, appears to show no tendency to bind to holes in the CuO_2 plane.

Our calculations suggest that the absence of superconductivity in YBa₂Cu₃O_{6+X} for X < ≈ 0.3 can be accounted for by the prediction that holes resulting from the excess oxygen, O_X, are trapped in the basal plane adjacent to the O(4) position, as opposed to being free carriers in the CuO₂ planes, in broad agreement with Goodenough's view [42]. In Y_{1-Z}Ca_ZBa₂Cu₃O₆, on the other hand, the basal plane contains neither lattice nor interstitial oxygen, so that holes introduced by Ca²⁺ will be located, at least partially, in the CuO₂ planes leading to superconductivity. This would appear to be a plausible explanation for high T_c behaviour in Ca-doped materials with oxygen content less than ≈ 6.3 [16, 17]. As in La₂CuO₄, the calculated association energy between Ca_Y and holes in the CuO₂ planes is very small, which contrasts markedly with the strong association predicted for basal plane holes and O(4).

In summary, then, the different locations of interstitial oxygen in La₂CuO₄ and YBa₂Cu₃O₆ have been shown to have important implications for the superconducting behaviour of these two systems. Calculations on oxygen incorporation in YBa₂Cu₃O_{6+X} for X > 0.3 will be reported elsewhere.

CONCLUSIONS

This paper has concentrated on the incorporation of oxygen in high temperature superconducting oxides. The location of the excess oxygen, the energetics of the process and the hole-interstitial association energies appear to have important consequences for the high- T_c properties. All of these differ significantly from one crystal structure to another.

It is suggested that excess oxygen can be incorporated in both La₂CuO₄ and Nd₂CuO₄ as doubly charged oxygen interstitials. The favoured position in each of these structures is close to a site occupied by an oxide ion in the other. Compensation of the negatively charged oxygen interstitials by holes provides an explanation

of the high temperature superconducting properties of oxygen-rich $La_2CuO_{4+\gamma}$. The results can also be used to rationalise why the fluorination of La_2CuO_4 leads to p-type superconductivity, whilst $Nd_2CuO_{4-\chi}F_X$ is an n-type material.

In YBa₂Cu₃O₆, excess oxygen enters the basal plane and is strongly bound to holes located in this plane. This suggests an explanation for the lack of superconductivity in YBa₂Cu₃O_{6+X} for $X < \approx 0.3$ and the high- T_c properties of Y₁₋₂Ca₂Ba₂Cu₃O₆.

La₂CaCu₂O₆ has the same double layer of CuO₅ bipyramids as YBa₂Cu₃O_{6+X} and all the superconducting oxides with the highest T_c 's. T_c 's of $\approx 60 \,\mathrm{K}$ and $\approx 45 \,\mathrm{K}$ have now been reported for La_{1.6}Sr_{0.4}CaCu₂O₆ [43] and La_{1.85}Ca_{1.15}Cu₂O₆ [44] respectively. Preliminary results for this system [45] indicate that oxygen interstitials will be located between the CuO₅ pyramids which provide the CuO₂ (super)conducting planes, unlike YBa₂Cu₃O₆.

In conclusion, atomistic lattice simulations have been used to highlight the importance of the defect chemistry associated with oxygen interstitial defects in high- T_c oxides. The calculations are relatively simple, but provide an specific approach to this problem that is highly versatile.

Acknowledgements

The contributions of Julia Lawton, Andrew McLean, Michael Turner and Paul Baram to this work are gratefully acknowledged. This work was supported in part by SERC grant GR/H07160.

References

- For example, T. Fujita and Y. Maeno, "Preparation and property of La_{1.85}Sr_{0.15}CuO₄ single crystal," Japan J. Appl. Phys., 26, L386 (1987).
- [2] Y. Tokura, H. Takagi and S. Uchida, "A superconducting copper oxide compound with electrons as the charge carriers," *Nature*, 337, 345 (1989).
- [3] J.D. Jorgensen, B. Dabrowski, Shiyou Pei, D.G. Hinks, L. Soderholm, B. Morosin, J.E. Schirber, E.L. Venturini, and D.S. Ginley, "Superconducting phase of La₂CuO_{4+δ}," Phys. Rev., B38, 11337 (1988).
- [4] J.E. Schriber, B. Morosin, R.M. Merrill, P.F. Hlava, E.L. Venturini, J.F. Kwak, P.J. Nigrey, R.J. Baughman, and D.S. Ginley, "Stoichiometry of bulk superconducting La₂CuO_{4+δ}: a superconducting superoxide?" *Physica*, C152, 121 (1988).
- [5] G. Demazeau, F. Tresse, Th. Plante, J. Chevalier, J. Etourneau, C. Michel, M. Hervieu, B. Raveau, P. Lejay, A. Sulpice, and T. Tournier, "Evolution of the superconducting properties in the La₂CuO₄ lattice versus oxygen pressure," *Physica*, C153-155, 824 (1988).
- [6] M.K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Q. Wang, and C.W. Chu, "Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure," Phys. Rev. Lett., 58, 908 (1987).
- [7] For example, N.L. Allan and W.C. Mackrodt, "The calculated defect properties of La₂CuO₄ related to high-T_c superconductivity," *Phil. Mag.*, A58, 555 (1988); N.L. Allan. J.M. Lawton and W.C. Mackrodt, "A comparison of the calculated lattice and defect structures of La₂CuO₄, La₂NiO₄, Nd₂CuO₄, Pr₂CuO₄, Y₂CuO₄, Al₂CuO₄," *Phil. Mag.*, B59, 191 (1989).
- [8] J.W. Rogers Jr., N.D. Shinn, J.E. Schirber, E.L. Venturini, D.S. Ginley, and B. Morosin, "Identification of a superoxide in superconducting La₂CuO_{4+δ} by X-ray photoelectron spectroscopy," *Phys. Rev.*, B38, 5021 (1988).
- [9] J. Zhou, S. Sinha, J.B. Goodenough, "Comment on 'Identification of a superoxide in superconducting La₂CuO₄₊₅ by X-ray photoelectron spectroscopy'", Phys. Rev., B39, 12331 (1989).
- [10] M.-Y. Su, E.A. Cooper, C.E. Elsbernd, and T.O. Mason, "High-temperature defect structure of lanthanum cuprates." J. Am. Ceram. Soc., 73, 453 (1990).
- [11] J.D. Jorgensen, B. Dabrowski, S. Pei, D.R. Richards, and D.G. Hinks, "Structure of the

- interstitial oxygen defect in $La_2NiO_{4+\delta}$," Phys. Rev. B, 40, 2187 (1989). C. Namgung, J.T.S. Irvine and A.R. West, "Absence of critical temperature plateau in quenched samples of YBa₂Cu₃O_X," Physica, C168, 346 (1990).
- [13] R. Beyers, B.T. Ahn, G. Gorman, V.Y. Lee, S.S.P. Parkin, M.L. Ramirez, K.P. Roche, J.E. Vazquez, T.M. Gur and R.A. Huggins, "Oxygen ordering, phase separation and the 60 K and 90 K plateaus in YBa₂Cu₃O_X," Nature, 340, 619 (1989).
- [14] R.J. Cava, A.W. Hewat, B. Batlogg, M. Marezio, K.M. Rabe, J.J. Krajewski, W.F. Peck Jr. and L.W. Rupp Jr., "Structural anomalies, oxygen ordering and superconductivity in oxygen deficient Ba₂ YCu₃O_X," Physica, C165, 419 (1990).
- [15] W.E. Farneth, R.K. Bordia, E.M. McCarron III, M.K. Crawford and R.B. Flippen, "Influence of oxygen stoichiometry on the structure and superconducting transition temperature of YBa₂Cu₃O_X," Solid State Commun., 66, 953 (1988).
- [16] E.M. McCarron III, M.K. Crawford and J.B. Parise, "Observation of superconductivity in (Y_{1-X}Ca_X)Ba₂Cu₃O₆," J. Solid State Chem., 78, 192 (1989).
- [17] C. Legros Glédel, J.F. Marucco, E. Vincent, D. Favrot, B. Poumellec, B. Touzelin, M. Gupta and H. Alloul, "Influence of the oxygen content on the critical temperature T_c and the thermopower of Y_{0.7}Ca_{0.3}Ba₂Cu₃O_Z," Physica, C175, 279 (1991).
- N.L. Allan, D.L. Cooper and W.C. Mackrodt, "The practical calculation of interionic potentials in solids using electron gas theory," Mol. Sim., 4, 269 (1990). The details of the potentials used in the present paper are available from the authors on request.
- [19] B.G. Dick and A.W. Overhauser, "Theory of dielectric constants of alkali halide crystals," Phys. Rev., 112, 90 (1958).
- [20] C.R.A. Catlow and W.C. Mackrodt, "Theory of simulation methods for lattice and defect energy calculations in crystals," in "Computer Simulation of solids" edited by C.R.A. Catlow and W.C. Mackrodt, pp 3-20, Springer-Verlag, Berlin (1982).
- [21] N.F. Mott and M.T. Littleton, "Conduction in polar crystals. I. Electrolytic conduction in solid salts," Trans. Faraday Soc., 34, 485 (1938).
- C. Chaillout, S.W. Cheong, Z. Fisk, M.S. Lehmann, M., Marezio, B. Morosin, and J.E. Schirber, "The crystal structure of superconducting La₂CuO_{4,032} by neutron diffraction," Physica, C158, 183, (1989); erratum, ibid., C159, 892 (1989).
- [23] X. Zhang, C.R.A. Catlow and W. Zhou, "The determination of the defect states in undoped superconducting La₂CuO₄ by computer simulation techniques," Physica, C168, 417 (1990).
- [24] N.L. Allan, J.M. Lawton, and W.C. Mackrodt, "Calculated crystal and defect properties of ternary cuprates M_2CuO_3 (M = Ca,Sr): Relationship to La_2CuO_4 and high- T_c superconductivity," J. Phys. Condensed Matter, 1, 2657 (1989).
- N.L. Allan and W.C. Mackrodt, "Atomistic simulation of high-T_c oxides," J. Amer. Ceram. Soc., 73, 3175 (1990).
- [26] N.L. Allan and W.C. Mackrodt, "Simulation studies of structural and defect properties of high temperature superconducting materials," Adv. Solid St. Chem., 3, 219 (1993).
- [27] N.L. Allan, P.S. Baram, W.C. Mackrodt and M.J. Turner, "Differences between high-T_c oxides containing six-, five-, four- and two-fold coordinated copper," Mol. Sim., 9, 115 (1992).
- [28] N.A. Fortune, K. Murata, M. Ishibashi, Y. Yokoyama and Y. Nishihara, "Systematic variation of transport and thermodynamic properties with degree of reduction in Nd_{1.85}Ce_{0.15}CuO₄₋₅, Phys. Rev., **B43**, 12930 (1991).
- [29] B.M. Tissue, K.M. Cirillo, J.C. Wright, M. Daeumlling and D.C. Larbalestier, "Conversion of La₂CuO_{4-δ} to a superconductor by treatment in fluorine gas," Solid State Commun., 65, 51 (1988).
- [30] B. Chevalier, A. Tressaud, B. Lepine, K. Amine, J.M. Dance, L. Lozano, E. Hickey and J. Etourneau, "Stabilization of a new superconducting phase by low temperature fluorination of La2CuO4," Physica, C167, 97 (1990).
- A.C.W.P. James, S.M. Zahurak and D.W. Murphy, "Superconductivity at 27 K in fluorine-doped Nd₂CuO₄," Nature, 338, 240 (1989).
- [32] J. Sugiyama, M. Kosuge, Y. Ojima, H. Yamauchi and S. Tanaka, "TEM observation and Hall measurement on superconductive Nd₂CuO_{4-X}F_X," Physica, C179, 131 (1991).
- [33] A. Tressaud, C. Robin, B. Chevalier, L. Lozano and J. Etourneau, "Superconductivity in chlorinetreated La₂CuO₄," Physica, C177, 330 (1991).
- [34] J. Sugiyama, R. Itti, H. Yamauchi, N. Koshizuka and S. Tanaka, "Photoelectron spectroscopy
- study of Nd₂CuO_{4-X}F_X," Phys. Rev., **B45**, 4952 (1992).
 [35] P. Lightfoot, S. Pei, J.D. Jorgensen, X.-X. Tang, A. Manthiram and J.B. Goodenough, "Interstitial anions in the T* structure," Physica, C169, 15 (1990).

- [36] M.K. Wu, J.R. Ashburn, C.J. Torng, P.H. Hor, R.L. Meng, L. Gao, Z.J. Huang, Q. Wang, and C.W. Chu, "Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure," Phys. Rev. Lett., 58, 908 (1987).
- W.M. Temmerman, Z. Szotek, P.J. Durham, G.M. Stocks and P.A. Sterne, "Electronic structure of Y-Ba-Cu oxides and fluorides," J. Phys., C17, L319 (1987).
- [38] N.L. Allan, M.J. Turner, A.L. McLean and W.C. Mackrodt, "The calculated crystal and defect chemistry of YBa₂Cu₃O₆," Ceram. Trans., 24, 277 (1991).
- [39] T. Wada, Y. Yaegashi, A. Ichinose, H. Yamauchi, and S. Tanaka, "Control of the hole concentration in the $YBa_2Cu_3O_{6+Z}$ -type superconductors (Yb, Ca) (Ba, Sr) $_2Cu_3O_{6+Z}$ with low and high Ca contents," Phys. Rev., B44, 2341 (1991).
- [40] M.E. Parks, A. Navrotsky, K. Mocala, E. Takayama-Muromachi, A. Jacobson and P.K. Davies, "Direct calorimetric determination of energetics of oxygen in YBa₂Cu₃O_X," J. Solid State Chem., 79, 53 (1989).
- [41] H. Verweij, W.H.M. Bruggink, R.A. Steeman, E. Frikkee and R.B. Helmholdt, "Oxidation enthalpy of YBa2Cu3O6+Y in relation with phase behaviour and stoichiometry," Physica, C166, 372 (1990).
- [42] J.B. Goodenough, "Chemical and structural relationships in high-T_c materials," Supercond. Sci. Technol., 3, 26 (1990).
- [43] R.J. Cava, A. Santoro, J.J. Krajewski, R.M. Fleming, J.V. Waszczak, W.F. Peck Jr. and P. Marsh, "The crystal structure of the La_{1.6}Sr_{0.4}CaCu₂O_{6+δ} superconductor," *Physica*, C172, 138 (1990).
- For example, K. Kinoshita, H. Shibata and T. Yamada, "Crystal structure and superconducting properties of La_{1.85}Ca_{1.15}Cu₂O_{6+δ}," *Physica*, C176, 433 (1991). N.L. Allan, P.S. Baram and W.C. Mackrodt, "The calculated crystal and defect chemistry of
- $RE_2MCu_2O_6$ (RE = La, Nd; M = Ca, Sr)", in preparation.